4,089 research outputs found

    Testosterone enables growth and hypertrophy in fusion impaired myoblasts that display myotube atrophy: deciphering the role of androgen and IGF-I receptors

    Get PDF
    We have previously highlighted the ability of testosterone to improve differentiation and myotube hypertrophy in fusion impaired myoblasts that display reduced myotube hypertrophy at 72hrs (after transfer to low serum media) via multiple population doublings (PD) vs. their parental controls (CON); an observation which is abrogated via PI3K/Akt inhibition (Deane et al. 2013). However, whether the most predominant molecular mechanism responsible for T induced hypertrophy occurs directly via androgen receptor or indirectly via IGF-IR/PI3K/Akt pathway is currently debated. PD and CON C2C12 muscle cells were exposed to low serum conditions in the presence or absence of T (100 nM) ± inhibitors of AR (flutamide/F, 40 μm) and IGF-IR (Picropodophyllin/PPP, 150 nM) for 72 hrs and 7 days (early/late muscle differentiation respectively). T increased AR and Akt abundance, myogenin expression, and myotube hypertrophy, but not ERK1/2 activity in both CON and PD cell types. Akt activity was not increased significantly in either cell type with T. Testosterone was unable to promote early differentiation in the presence of IGF-IR inhibitor (PPP) yet still able to promote appropriate later increases in myotube hypertrophy and AR abundance despite IGF-IR inhibition. The addition of the AR inhibitor powerfully attenuated all T induced increases in differentiation and myotube hypertrophy with corresponding reductions in AR abundance, phosphorylated Akt, ERK1/2 and gene expression of IGF-I, myoD and myogenin with increases in myostatin mRNA both cell types. Interestingly, despite basally reduced differentiation and myotube hypertrophy, PD cells showed larger increased in AR abundance vs. CON cells, a response abrogated in the presence of AR but not IGF-IR inhibitors. Furthermore, T induced increases in Akt abundance were sustained despite the presence of IGF-IR inhibition in PD cells only. However, flutamide alone reduced IGF-IR mRNA in both cell types across time points, with an observed reduction in activity of ERK and Akt, perhaps suggesting that IGF-IR was transcriptionally regulated by AR. However, where testosterone increased AR protein content there was no increases observed in IGF-IR gene expression. Overall, this suggested that sufficient AR was important to enable normal gene expression of IGF-IR and downstream signalling, yet elevated levels of AR due to testosterone had no further effect on IGF-IR, despite testosterone increasing Akt abundance in the presence of IGF-IR inhibitor. In conclusion, testosterones ability to improve differentiation and myotube hypertrophy occurred predominately via increases in AR and Akt abundance in both CON and PD cells, with fusion impaired cells (PD) showing an increased responsiveness to T induced AR levels. Finally, T induced increases in myotube hypertrophy (but not early differentiation) occurred independently of upstream IGF-IR input, however it appears that normal AR function in basal conditions is required for adequate IGF-IR gene expression and downstream Akt abundance

    The relation of preoperative coagulation findings to diagnosis, blood usage, and survival in adult liver transplantation

    Get PDF
    A group of 70 adults with end-stage liver disease received 87 homologous liver transplants from 7/11/81 and 7/11/83. The recipients fell into the following diagnostic categories: Postnecrotic cirrhosis (PNC) in 22, primary biliary cirrhosis (PBC) in 18, cancer or neoplasia (CA) in 11, sclerosing cholangitis (SC) in 8 and miscellaneous (MISC) in 11. Survival for six months or longer was 46%: Survival by group was PBC=67%, CA=55%, PNC=45%, SC=25%, and MISC=18%. Preoperative coagulation profiles were evaluated on 64 of the 70 first transplant patients by assigning a score derived from one point per abnormality in each of 8 tests. Mean coagulation abnormality scores (CAS) were strikingly elevated in the PNC and MISC groups. Mean intraoperative blood product usage was 43 units of RBCs, 40 units of fresh frozen plasma (FFP), 21 units of platelets, and 9 bags of cryoprecipitate. Direct correlations were found between CAS and RBC usage (+0.454, P=001), CAS, and survival of 6 months or longer (-0.281, P=.02), and RBC usage and survival (-0.408, P=.001). These findings indicate that the degree of coagulation abnormality and the type of liver disease may be predictive of intraoperative blood usage and survival in liver transplantation in adults. © 1985 by The Williams & Wilkins Co

    A massive reservoir of low-excitation molecular gas at high redshift

    Full text link
    Molecular hydrogen is an important component of galaxies because it fuels star formation and accretion onto AGN, the two processes that generate the large infrared luminosities of gas-rich galaxies. Observations of spectral-line emission from the tracer molecule CO are used to probe the properties of this gas. But the lines that have been studied in the local Universe, mostly the lower rotational transitions of J = 1-0 and J = 2-1, have hitherto been unobservable in high-redshift galaxies. Instead, higher transitions have been used, although the densities and temperatures required to excite these higher transitions may not be reached by much of the gas. As a result, past observations may have underestimated the total amount of molecular gas by a substantial amount. Here we report the discovery of large amounts of low-excitation molecular gas around the infrared-luminous quasar, APM 08279+5255 at z = 3.91, using the two lowest excitation lines of 12CO (J = 1-0 and J = 2-1). The maps confirm the presence of hot and dense gas near the nucleus, and reveal an extended reservoir of molecular gas with low excitation that is 10 to 100 times more massive than the gas traced by higher-excitation observations. This raises the possibility that significant amounts of low-excitation molecular gas may lurk in the environments of high-redshift (z > 3) galaxies.Comment: To appear as a Letter to Nature, 4th January 200

    Diversity, duplication, and genomic organization of homeobox genes in Lepidoptera

    Get PDF
    Homeobox genes encode transcription factors with essential roles in patterning and cell fate in developing animal embryos. Many homeobox genes, including Hox and NK genes, are arranged in gene clusters, a feature likely related to transcriptional control. Sparse taxon sampling and fragmentary genome assemblies mean that little is known about the dynamics of homeobox gene evolution across Lepidoptera or about how changes in homeobox gene number and organization relate to diversity in this large order of insects. Here we analyze an extensive data set of high-quality genomes to characterize the number and organization of all homeobox genes in 123 species of Lepidoptera from 23 taxonomic families. We find most Lepidoptera have around 100 homeobox loci, including an unusual Hox gene cluster in which the lab gene is repositioned and the ro gene is next to pb. A topologically associating domain spans much of the gene cluster, suggesting deep regulatory conservation of the Hox cluster arrangement in this insect order. Most Lepidoptera have four Shx genes, divergent zen-derived loci, but these loci underwent dramatic duplication in several lineages, with some moths having over 165 homeobox loci in the Hox gene cluster; this expansion is associated with local LINE element density. In contrast, the NK gene cluster content is more stable, although there are differences in organization compared with other insects, as well as major rearrangements within butterflies. Our analysis represents the first description of homeobox gene content across the order Lepidoptera, exemplifying the potential of newly generated genome assemblies for understanding genome and gene family evolution

    Potentiality in Biology

    Get PDF
    We take the potentialities that are studied in the biological sciences (e.g., totipotency) to be an important subtype of biological dispositions. The goal of this paper is twofold: first, we want to provide a detailed understanding of what biological dispositions are. We claim that two features are essential for dispositions in biology: the importance of the manifestation process and the diversity of conditions that need to be satisfied for the disposition to be manifest. Second, we demonstrate that the concept of a disposition (or potentiality) is a very useful tool for the analysis of the explanatory practice in the biological sciences. On the one hand it allows an in-depth analysis of the nature and diversity of the conditions under which biological systems display specific behaviors. On the other hand the concept of a disposition may serve a unificatory role in the philosophy of the natural sciences since it captures not only the explanatory practice of biology, but of all natural sciences. Towards the end we will briefly come back to the notion of a potentiality in biology

    Perceptual Knowledge and Relevant Alternatives

    Get PDF
    A very natural view about perceptual knowledge is articulated, one on which perceptual knowledge is closely related to perceptual discrimination, and which fits well with a relevant alternatives account of knowledge. It is shown that this kind of proposal faces a problem (the closure problem), and various options for resolving this difficulty are explored. In light of this discussion, a two-tiered relevant alternatives account of perceptual knowledge is offered which avoids the closure problem. It is further shown how this proposal can: (1) accommodate our intuitions about perceptual knowledge and perceptual discrimination in terms of the notion of primary relevance, (2) give an account of how alternatives can be rationally excluded without appeal to perceptual discrimination in terms of the notion of secondary relevance, and (3) deal with the problem posed by inverted Gettier cases, and hence explain what it means to rationally exclude alternatives which are of secondary relevance
    corecore